Reidemeister Classes in Some Weakly Branch Groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Reidemeister classes

In order to compute the Nielsen number N(f) of a self-map f : X → X, some Reidemeister classes in the fundamental group π1(X) need to be distinguished. In this paper some algebraic results are given which allow distinguishing Reidemeister classes and hence computing the Reidemeister number of some maps. Examples of computations are presented.

متن کامل

Some numerical results on two classes of finite groups

In this paper, we consider the finitely presented groups $G_{m}$ and $K(s,l)$ as follows;$$G_{m}=langle a,b| a^m=b^m=1,~[a,b]^a=[a,b],~[a,b]^b=[a,b]rangle $$$$K(s,l)=langle a,b|ab^s=b^la,~ba^s=a^lbrangle;$$and find the $n^{th}$-commutativity degree for each of them. Also we study the concept of $n$-abelianity on these groups, where $m,n,s$ and $l$ are positive integers, $m,ngeq 2$ and $g.c.d(s,...

متن کامل

some special classes of n-abelian groups

‎given an integer $n$‎, ‎we denote by $mathfrak b_n$ and $mathfrak c_n$ the classes of all groups $g$ for which the map $phi_{n}:gmapsto g^n$ is a monomorphism and an epimorphism of $g$‎, ‎respectively‎. ‎in this paper we give a characterization for groups in $mathfrak b_n$ and for groups in $mathfrak c_n$‎. ‎we also obtain an arithmetic description of the set of all integers $n$ such that a gr...

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Russian Journal of Mathematical Physics

سال: 2019

ISSN: 1061-9208,1555-6638

DOI: 10.1134/s1061920819010126